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1. Introduction

The behavior of compression impact specimens of material exhibiting rate

dependent plastic characteristics is of interest in the design and interpretation

of experiments for investigating dynamic plastic properties. Previous studies

[1], [2] have presented approaches by way of analytical solutions of the partial

differential equations describing the dynamic deformation. Analytical solutions

are possible only if the general partial differential equations are linearized,

or if approximations are introduced so that the problem is reduced to solving

ordinary differential equations. Since the actual behavior of structural metals

is strongly non-linear, it is necessary for a realistic treatment to include non-

linear relations between stress, strain, and strain rate, as well as irreversi-

bility, in representing the plastic behavior. The present paper describes a

scheme of a numerical solution suitable for general viscoplastic laws. The tech-

nique is illustrated by computations for two types of viscoplastic law. More

extensive calculations and interpretations with experiments will be given in a

companion paper.

We consider the problem of impact on a finite rod as shown in Fig. 1.

A rigid body of mass G with initial velocity V parallel to the axis of the rod

strikes at the free end x = 0 of the rod. After contact, the striking mass is

assumed to stick to the end of the bar. It is assumed that the input kinetic

energy GVo 2/2 is much larger than the maximum elastic energy ao 2AL/2E which the

rod can absorb. (Here a and E are respectively the static yield stress and the

elastic modulus of the rod; A and L are respectively the initial cross sectional

area and the length of the rod.) Hence, the elastic strains are assumed negli-

gible in comparison to plastic strains. The material is regarded as rigid-visco-

plastic, meaning that no deformation occurs if the dynamic stress is smaller than
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the static yield stress and the rate of deformation is governed by a functional

relation between strain rate, stress, and strain if the dynamic stress exceeds the

static yield stress.

We introduce the following dimensionless notation:

Table 1

aT V S
f pDL 2  DL a0

G a0o Vo EjpD2 L2

k=-- •= -- v =-- kpAL VD2 L2  o DL ao2

where

X = distance along rod from impact end

T = time

L = length of rod

p = mass density of the rod material

G = mass of striking body (assumed rigid)

V = particle velocity at X,T

V = initial velocity of striking mass
0

a nominal compressive stress
a= static yield stress in compression (nominal)

0

Snominal compressive strain

D = constant expressing viscoplastic behavior

El= slope of strain hardening curve (tangent modulus in
plastic range)
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The equations of dynamics and of continuity of velocity are as follows in the

dimensionless notation:

S -Vx t (1)

Ut = - v.
t x

where a subscript denotes partial differentiation. The plastic strain rate

behavior will be expressed by means of a function F(sn) such that

nt F(s,q) > 0 if s > g(n)

(2a)

S.0 if IsI : g(n)

where s g(n) is the condition for plastic flow under quasi-static loading,

with g(O)= 1. F(s,q) is assumed to obey the following conditions:

F >0
s

F T 0 (2b)

F(g(n), n) = 0.

The form of F which we shall consider in this analysis is

Tt = (s -1- XD)P if s > 1 + XTI

(3)

= 0 if Isi 5 1 + Xn

where p and X are constants of the material. The power p corresponds to the non-

linearity of the viscoplastic behavior, having values in the neighborhood of 5

for several structural metals (2). The coefficient X is proportional to the slope

of the static stress-strain curve in the plastic range, this being taken as linear

for simplicity. For a more general form of F, a material without strain hardening
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can be characterized by F = 0.n

The initial and boundary conditions of the problem are:

For 0 1 x S 1:

v(x,O) = n(xO) = 0 (4a)

s(x,0) = I (4b)

For 0 : t:

v(l,t) ,; v(O,0) v 0 (4c)

s(O,t) = - kv t(Ot) (4d)

t

The boundary condition at x = 0 of Eq. (4d) is used as long as n (O,t) > 0. When

n t(O,t) 5 0, there is an unloading boundary c(t) (see Fig. 2) along which nt(t,t) 0.

Then Eq. (4d) must be replaced by

s(C,t) - (k + C)v (c,t). (4e)

The numerical solution of Eqs. (1) and (2) subjected to conditions (4) will be

discussed in turn in the following sections for materials without strain-hardening

(A = 0) and with strain-hardening (X > 0). The condition (4b) was discussed in [1].

2. No Strain-Hardening

For materials that exhibit no appreciable strain-hardening, the strain rate

function F can be assumed independent of n. Hence, instead of Eqs. (2) we write,

nt = G(s) > 0 if s > 1

(5)

= 0 if Isl : 1

where Gs > 0 and G(l) = 0. Hence, in the region where plastic deformation is

occurring, Eqs. (1) and (5) reduce to

Sxx - Gs(S)St = 0 if s > 1. (6)
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This is a quasi-linear parabolic equation.

It was shown in [3] that the solution of (6) with the initial and boundary

conditions of (4) cannot have an unloading initiated in the interior of a plastic

region. The proof depends on the maximum-minimum principles governing equations of

the type of Eq. (6) (see [4]).

When Eq. (6) is replaced by a finite difference scheme for numerical calcu-

lation, one has to pay attention not only to the convergence and stability of the

finite difference equations, but also to the maximum-minimum properties of the

equations. Otherwise, physical requirements of the solution may be violated. The

maximum-minimum principles for various finite difference equations which approximate

Eq. (6) were studied in [5]. The results show that, except for the backward differ-

ence method, there is a restriction on the mesh ratio, which depends on Gs (s), in

order for the principles to hold. If we denote the mesh ratio At/(Ax) 2 by r, the

results of [5] show that the weak maximum-minimum principle holds if

r 5 G (s)/2 for the forward methods

r G S(S) for the Crank-Nicolson method

any r for the backward method.

If Gs (s) is very small for certain s, the mesh ratio must be chosen inconveniently

small unless one uses the backward method. For instance, without strain-hardening,

Eq. (3) is written as

nt = (s - 1)1 if s > 1

(7)

= 0 if Isl 5 1.

Hence G (s) = p(s - . For p > 1, 1G approaches zero as s approaches one.
5 5

Therefore, in order to use the same mesh ratio for the whole calculation, we shall

use only the backward difference method.
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We shall derive the finite difference equations directly from Eqs. (1), and

represent the rod for this purpose by a model consisting of discrete mass particles

(Fig. 3). Let us divide the rod into n segments (hence Ax = l/n) and replace the

mass of each segment by a mass particle at the center of the interval. We denote

s ni,j the stress and strain respectively at the grid point x iAx, t = jAt,Sij

and we let v.. denote the velocity at x = (i - !)Ax, t = jAt. The strain rate will

be written as i,j instead of using a subscript t. Now, Eqs. (1) and (5), together

with the boundary and initial conditions (4c)-(4e) can be written (see Fig. 3) as

follows, with r = At/(Ax) 2 :

Difference equations:

(a) Impulse-momentum, j 1,2... (8a)

i 0: 5 -n 2 k
0S,1 r o,j o

il,2,....tn: S. s - (v. v.
i,,..n str i,j 11-1

(b) Viscoplastic behavior, j = 0,1,2... (8b)

i 0,1,2... .n: n f.. = G(s .) if s > 1O~,2.n:l, i,j 1,]

= 0 ifs. . 1_
1,]

(c) Velocity-strain rate, j = 1,2... (8c)

0:..nl Vi l,j - 0i,j ý n oj

1
n: vl,j on ij n oj

Sn:vn,] 2n i,j
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Initial Conditions (j = 0) (9)

i 0: v = v ; 0,0 2nv = G(s )0,0 0 0,0 0 0,0

i 1,2....n: v ,° 0; io 0

s. =1
1,0

It should be noticed that, with Eqs. (8b), the unloading condition is taken into

account and Eq. (4e) is automatically satisfied.

One can eliminate v. . from Eqs. (8). If this is done one obtains for the

general case, with j = 1,2,...; i = 1,2,...n-1:

1

islj i,j r i,j i,j-1

1 [G(s. ) - G(s. ], (lob)
r i ,j ,j-)

making use of Eq. (5), where G(s.i)= 0 if js.j . : 1. Equation (lob) corresponds

to the backward finite difference form of Eq. (6). The existence and uniqueness of

the solution of s.. for given s1. of Eqs. (10) were shown in [5].

For given vi.,jl, Eqs. (8) can be solved by a method of successive approxi-

mations for vij, st j and fti.j. By assuming an approximate value v(o) for v
(0) (0) (0)

the first equations of Eqs. (8a), (8b) and (8c) give s(oj, oj"() and v (o) respec-
(o) .(o)

tively. The second equations of Eqs. (8a), (8b) and (8c) then give slj, (0 - '

and v2,j We continue this process until v(o) s(o) and . (o) are obtained. If2, n,j' n,j' nn,j aeo ie.I

the starting value v(0. is the correct one, then the last equation of Eqs. (8c)o,]

will be found to be satisfied. In other words, if corresponding to the assumed

v(°) we compute ,(o) where

ý(o) = v(O) 1 (o)
n,j 2n n,j

and find that p.) is zero, we have obtained the solution for time t jAt. Other-
J

wise, we assume another approximation v (). and repeat the process.
o,]
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Let 6u denote the error, i.e. the difference between a function u and its

approximation u (o,

6u E u - u)

Then, from Eqs. (8), one can show (cf. [5]) that

if 6v . > 0,

6ý 6 z 6 Vnl, > ....... . 6v > 0 (12a)

6Snj . Snl,j ........ 6so,j < b.

Similarly, if 6v . < 0,

6* 5 6Vn,j : 6Vn-lj 3 ........ 5 6V.o,] < 0 (12b)

Sn,j -6Sl,j ........ ; So > 0.

In other words, the absolute values of the error in the calculation of v. andi,1

s. . increase as i increases. The errors in v. . are of the same sign. Similarly,

the errors in st,, which have opposite signs to vi, are of the same sign. With

the properties expressed in Eqs. (12) there is no difficulty in the process of

successive approximation.

It should be noticed that the successive approximation can be improved by

considering other properties, besides Eq. (12), of the solution. For instance, the

fact that the unloading boundary must start from x = 0 and terminate at x 1

implies that

if Sk~ e 1, st,j > 1 for i > k.

Also, it can be shown (see [3]) that for 1 : j < N,

vi j > 0 for i = 0,1i ..... n.
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At time tf = NAt all velocities and strain rates are zero, and the deformation stops.

The strains nj . are obtained from

1Jni'j-1 + At,

which is essentially a backward difference expression for . ..

For illustration, the strain rate function of Eq. (7) is taken. In the

calculations, p is taken from 1 to 5, Ax = 0.05 and At = 0.025. To show the

accuracy of the numerical calculation for this choice of mesh size, we compare the

results for k = 1, v = 5, and p = 1 with the exact solution of the differential0

equation (see [1]), as shown in Fig. 4. Note that the initial condition of the

problem for the differential equation is s(0,0) = while that for the finite

difference system Eqs. (9) in this example is s = 201. Nevertheless, the agree-
oo

ment for the stress distribution is fairly good at t = 0.1, which is only four

steps from t 0. For t 2 0.4, there is practically no difference between the exact

and numerical solutions for both stress and strain in the rod. The time of unloading

t is 1.665 and the total time of deformation tf is 2.120 in the exact solution. In

the numerical solution, they are 1.680 and 2.128 respectively.

The same mesh size is used in the calculations for p 1 to 5, with the same

impact data k = 1, v 5. Some of the results are shown in Figs. 5 to 9. Further
0

discussion is deferred to later sections, after the presentation of the solution

for strain-hardening.

3. Solutions for Strain-Hardening Materials

For materials that exhibit strain-hardening, the more general strain rate

function Eqs. (2) must be used. Although the system of equations cannot now be

reduced to a second order parabolic equation in s alone, we shall still use the

backward finite difference scheme to approximate the differential equation. This

is done so that the solution will exhibit various properties found for non-strain-
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hardening materials, when the material has very small but finite strain-hardening.

We use the same model as before, Fig. 3. All of Eqs. (8) are still valid

except for Eqs. (8b) which must be replaced by

hi'j =F(si~j ni'j) if s. j > g(ni,j)
(8b')

- 0 if lsi,jl S g( ij)

where ni'j = nili-1 + ýi,,At. The numerical solution of Eqs. (8a), (8b') and (8c)

by successive approximation is essentially the same as that illustrated in the

previous section. The only difference is in the calculation of %ij by Eqs. (8b')

when s. is known. (nij-l of course, is known.) Eqs. (8b') for s.t. > g(ni.)
15,] ijJ'

can be written as:

i,j = F(si'j i,j-iV+ hi,jAt).

If this equation can be solved for h explicitly, then the calculation is straight-

forward. Otherwise, an iteration scheme may be devised for the calculation of

from s.1,]

The inequalities expressed in Eqs. (12) are still valid for Eqs. (8a), (8b')

and (8c), in view of the conditions Eqs. (2b) imposed on F. Therefore, there is no

difficulty in the solution by successive approximations of this new system of

equations. The existence and uniqueness of the solution follow automatically.

In [3], it was pointed out that the solution of the differential equation

of motion with strain rate function represented by Eqs. (2) satisfies the minimum

principle; the stress s cannot have a minimum value in the plastic region. To see

that the finite difference equations, Eqs. (8a), (8b') and (8c), do possess the

same minimum principle, one can eliminate v.. from Eqs. (8a), (Sb') and (8c) and

obtain a system of equations similar to Eqs. (10b):



1i

s [F(s 2 +) - F(s i ] (13a)
i+l,j - i-l,j j' ij,j-l ,j-

where i = 1,2 ...... ,n-l. The equations for i = 0 and n are not needed. Now, by

the mean value theorem, the right-hand side of Eq. (13a) can be written as

F(s i'j' 'i'j) F(s i'jI, "i'j-l) (s i'] - si'jI) F + 1h,3 hi'j-I)

((s.. - S. s +i,j Ffl At

(si,j s i,j-) F + F(si'j, ni~) Fn At

where F F " - sij F), F n .)s Fssj 1i,j) n fl F1'•,j)

si,j = esi, + (1 - O)siI.

nj = 8hi~ j + (i - Oni,j-1 0 < 0 < 1.

Therefore,

F(sij ni, )_ = [F(si 1  ij-1 + (sij s _i)j- s
i-T At

and Eq. (13a) becomes

si -2s. -+s 1 [AtT F(si l ) + (si . - si
i+lj - 2slij r(l-F At) i'j-l, i'jl i !

(13b)

Since F > 0, F :- 0 by Eqs. (2b), Eq. (13b) satisfies the conditions of the minimum
s n

principle as shown in Lemma II of [5]. Thus s. . cannot have its minimum at an

interior point.

As an illustration, we take the strain rate function represented by Eqs. (3)

with X = 1. The results for k = 1, v = 5 and p = 1 to 5 are shown in Figs. 6 to 10.0

In all these calculations, the same mesh size (Ax = 0.05, At = 0.025) is used as for

the previous example.
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For p = 1, the problem is linear and the analytic solution can be obtained

by using the Laplace transform. This is shown by the bold face lines in Fig. 7B

for the. solution before unloading occurs. It is seen that the differences between

the exact and numerical solutions are indistinguishable for larger t.

To investigate the accuracy for p other than one, we consider the example

for p = 3. When Ax is decreased, the solution does not seem to improve in any way.

For smaller At, however, the solution does depend on At as shown in Fig. 5. Here

we see that the unloading time t and the total strain n(0, t ) at the free end vary0 0

nearly linearly with At. For more detailed comparisons, the solution for p = 3

with At = 0.0125 (which is half the original interval At = 0.025) is shown in Figs.

6B and 7B by the dotted lines. The results are fairly good for x # 0. In general,

the result is qualitatively satisfactory even for x = 0, if not quantitatively.

The difficulty in the accuracy of the solution at x = 0 is the fact that the ori-

ginal differential equation has a singular initial condition while the approximate

finite difference equation does not (and from the numerical point of view cannot)

have this kind of singularity.

Figures 6-12 present curves showing plots of various quantities as functions

of x or t. Figures 6-10 show results for impact conditions k 1, v= 5; while

Figs. 11 and 12 are for k = 1 and 10, with v ranging from 0.1 to 20.

The most interesting single feature of these results is perhaps the appear-

ance of qualitative as well as quantitative contrasts between the cases X = 0

and X = 1, i.e. between a pure viscoplastic material (perfectly plastic behavior

with yield stress dependent on strain rate), and a modified form of viscoplastic

behavior in which strain hardening is considered. For example, considering final

strains plotted as functions of x, Fig. BA (for X 0) shows monotonically de-

creasing functions whereas in Fig. 8B (for X = 1) the curves for p a z show

pronounced minima; that for p = 1 monotonically increases. The curves in Figs. 11

and 12 (for a variety of k and v magnitudes) also exhibit characteristic features0
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of being concave up for X = 0 and concave down for X = 1, at the point x = 1.

This difference between the two media was proved analytically for p = 1 in [31,

and the present calculations suggest that it holds also for the non-linear

materials considered here.

The curves of Figs. 11 and 12 show final strains nf(x) in ratio to the

strains nf computed from an analysis which assumes that strains and stresses are

at all times uniform along the specimen rod. This simplified analysis is outlined

in the next section. It is seen that the final strains tend toward the result of

the uniform strain theory as either k or v0 increases, but the effect of increasing

k is particularly strong.

Further remarks on physical interpretation of these results are given in

the final section.

4. Uniform Strain Analysis

As the striking mass or impact velocity is increased, the strains tend toward

a uniform distribution along the rod. An approximate theory assuming uniform stress

and strain is presented here, appropriate for sufficiently large k or v0

If v(t) is the velocity of the striking mass, since all quantities are inde-

pendent of x the equations of motion and strain rate behavior are

s(t) = - kv t(t)

nt(t) = F(sn) = v(t)

Eliminating s and v between these equations,

nt = FE-kntt, n] (14a)
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with the initial conditions

n(o) = 0, nt(0) = v . (14b)

Equations (14) can be reduced to a first order equation. Let

nt = q.

Then t dq q

and Eqs. (14) become

q = F[-kq dd-•, n] (15a)
dn

q = v when 1 = 0. (15b)0

If Eq. (15a) can be solved for dq/dn, it is convenient to put it in the form:

d_ = f(q,n). (16)

Conventional methods of integrating first order differential equations can be

applied to Eq. (16) with initial condition (15b). For comparison with the results

of previous sections, we take F as expressed by Eq. (3). Then Eq. (16) becomes

dn kq (17a)
dq 1+ Xn + ql1/p

with the initial condition

qv, n 0. (17b)

Our object is to find the final strain nlf which is the value of n at q = 0.

The integration of Eq. (17) was done by electronic computer, and the values of n f have

been used in presenting the'results of the complete solution in Figs. 11 and 12.
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Equation (17) can be solved analytically in a closed form when X = 0

with p integer or X •0 with p 1. For X = 0 with p integral, the solution is

given in [2]. For X • 0 and p 1, the solution is

vo/2•vo-8p
f0

v v + 2 -+v 2_ 8p

00

XTf + I i + v +2pIt)i/ o ifv2o1
f I ' +!r p0(8

v 2+ /v 2v82

o oif v 2 < 8ý'

0

e nf+ = (exp -if vp2  ( 18

' o' 2]8

* 12 v -l m V2
flqf + 1 =(1 + v +- 2A)I/ exp o tan j

0 K o / 2 2 +v
0 0

0

where p. = kv .*
0

5. Discussion

In the preceding work the non-dimensional variables listed in Table 1 were

used for convenience in the computations. For physical interpretations, these have

disadvantages of mixing physical quantities specifying the impact conditions with

those, describing the material behavior. Also the quantities specifying plastic and

viscous properties are intermingled. For example, the impact data are 'specified by

the quantities k = G/pAL and v V /DL, and the parameter X = E pD2L2/a 2 is used

to specify the strain hardeningbehavior. These are convenient for numerical work,



16

but make it difficult to draw comparisons between different materials And impact

conditions. The following dimensionless parameters have more obvious physical

meaning and are more convenient for physical .interpretations:

Table 2

Independent variables: x = / T
L *L

vG v
Impact parameters: k = G- 0

0 0

E1

Plasticity (strain hardening):, =-

0

Strain rate dependence: v D ' P

Note relations with previously defined
v, 0 , , t:

o 1 __

Vo = V 0f 2k

VE:T = k-

In the new parameters of Table 2, the quantity /o/•'p, with dimensions of

velocity, is a convenient reference characteristic of the material. There are

two independent parameters specifying the impact data, which can be defined in

various ways but in any case enable one to specify the initial energy and initial

momentum of the striking mass. The most useful.impact parameter is ef, which
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represents the final strain in the specimen under the idealized conditions of

uniform strain and stress, all the energy being imagined as absorbed at the yield

stress a with neither strain hardening nor rate sensitivity. Since c 0is also the
0f

initial kinetic energy of the striking mass, in a non-dimensional form, the energy

ratio R of initial energy to the maximum elastic strain energy can be written as

GV 2  02 2E o
R = - AL = E (19)

2 0 2E a
0

A necessary condition for validity of a rigid-plastic treatment is that R >> 1;

0
for.:the impact problem this would be also a sufficient condition. For f of the

order of 0.05 or more, R would be roughly 100 or larger for one of the structural

metals, and presumably a rigid-plastic treatment would apply with good accuracy.

Similarly, the parameter T 0 is the (non-dimensional) duration time of the
f

deformation; it is also the initial momentum in a non-dimensional form.

Estimates of the approximate ranges of numerical values of ."a /p and other
0

parameters representing material properties were given in [2] as follows:

E P/a 0
- Ep/O o

ao(ksi) v'a/p (in-sec- = p =L(in.)

Mild steel 30 6,500 6-9 4-6 25-200

Aluminum
alloy 40 12,500 1-4 4-8 0.05-2
6061-T6

With these ranges in mind, the physical significance of the illustrative

cases treated in this report can be seen. Results have been given for k 1, 10;

v = 1, 5, 20; X 0, 1. Effects of changes of one of the impact variables k or
0
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f (or o) or of the material parameters v or a, can be observed if all the remaining

quantities are held constant. For example, suppose v and 8 have constant values;

changes of k or of v0 then show the effects of changing impact conditions on specimens

of a given material. Table 3 shows the numerical values of o0 , ef) and ý assuming

v 20, which correspond to the magnitudes of k, vo, and X used in the calculations

of this report.

Table 3

Interpretation of impact data with v 20

E = n/V 2 =n/400

8=0forX=0

= 400 for X = 1

0k f k 10 7

0.1 0.005 ,125x10 1.25x10-4'

1 0.05 .125xi0 2  .0125

5 0.25 .0313 0.313

20 1.0 .5 5

The results shown in Figs. 11 and 12 thus correspond to tests on a material

of moderately strong rate sensitivity and either no strain hardening or very large

strain hardening. The range of impact energies considered is too wide to be realistic;

at the small values of v the condition R >> 1 for a rigid-plastic treatment could0

hardly be satisfied, while at the largest values of v and k the strains are unrealis-
0

tically large.
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Alternatively one can take the impact conditions constant and consider the

effects of changing material parameters. However the relation 6 Xv2 shows that if

X is constant, a change in 8 accompanies one in v. The present calculatlions are

therefore not suitable for comparing the responses of different materials under

constant impact conditions. Further calculation for this purpose has been carried

out, and will be presented in a companion report [6].
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